

A Road to NetZero - Nordic Cleantech Open Finals 16.11.2021 Hycamite TCD Technologies / Niina Grönqvist

Industrial transformation to carbon neutrality

Clean hydrogen and solid, sustainable carbon for industry

Climate change

Existing solutions?

Fast transition is needed

Battery industry is developing rapidly Renewable energy production?

The supply of critical materials?

Hycamite's solution: TCD* Process

* TCD – Thermo Catalytic Decomposition (of methane or biomethane)

BUSINESS ENVIRONMENT Why Hydrogen?

Hydrogen can be used to decarbonise many different industries and applications

Team

- Company established 2020
- Personnel: 16
- Location: Kokkola, Finland
- Status: Growing fast **from pilot scale to industrial scale** (TRL 5-6)

Business model – sales of the output and ownership of plants via SPV⁽¹

1) SPV – Special Purpose Vehicle

Stakeholders

Hycamite

- IP / Tech know-how.
- Business development, cooperation agreements.
- Plant operations.

Hycamite production sites

- Sites close to local H₂ customers.
- Long supply agreements especially on the hydrogen.
- Operations from the Hycamite, maintenance and service locally.
- Financing through SPV's.

Special purpose vehicle

- Financing of the plants via asset investors.
- Fixed and safe returns.

Revenue streams, customers

High value-added carbon

• Strategic partners, special products.

Hydrogen

- Local, industrial customers that use the H₂ either as a fuel or as a raw material.
- Long supply agreements.

Commodity carbon

- Regional customers with long supply agreements.
- Carbon traders.

Carbon emissions trading

• Where possible.

SCIENTIFIC BACKGROUND

Commercialising Top European Research

Roots of the technology at the University of Oulu

Catalyst development

- Reduces energy consumption of TCD process
- Enables special high quality carbon products

Expertise on carbon product applications

- Advantage compared to hydrogen competitors
- Enables unique position in the market

Process technology innovations

 Energy savings through heat exchange, product stream differentiation, catalyst regeneration, and several other innovations

Hycamite has full freedom of operation

Preliminary patent landscape completed

Regarding Hycamite technology, following scientific publications have been published by our researchers:

- 42 Scientific publications
- 4 Dissertation defence (PhD)
- 5 Master of Science Thesis (Technology and Chemistry)
- 3 Bachelor of Science Thesis (Technology)

Left: Stability of standard catalysts. Right: stability of one of the Hycamite catalysts. Note, the drops indicate manual shutdowns, no catalyst was changed. The performance of the Hycamite's catalyst in this test remained practically unchanged after 7 hours of testing when the other catalysts loose their activity in minutes.

7

PRODUCTS - CARBON

Sustainable Carbon as a secondary product supplementing the sales

Carbon nanotubes (CNT)

Carbon nanofibers (CNF)

Amorphous carbon \rightarrow activated carbon

Graphite

CNT, CNF

 Battery industry
 Electric vehicles (supercapacitors)
 Catalysts

 Battery industry
 Lightweight materials for automotive and aerospace industry

Activated carbon

- Water treatment
- Pharmaceutical purification
- Industrial applications

Comparison of different hydrogens

۲

There are many ways to produce hydrogen. Here a quick third party overview.

	SMR ⁽¹ (Grey H ₂)	SMR with CCS ⁽² (Blue H ₂)	Electrolysis (Green H ₂)	Hycamite TCD (Clean or Turquoise H ₂)
Low or no CO ₂	×	× / ✓	\checkmark	✓ / <0
No need for additional, massive power generation capacity and thus rapidly scalable	\checkmark	\checkmark	×	✓
Possibility to load-following production and thus no or only a small need for storage facilities	× / ✓	× / ✓	×	✓
No need of rare earth metals in the production units	\checkmark	\checkmark	×	\checkmark
Additional revenue from carbon sales	×	×	×	\checkmark
Estimated costs EUR per kg H ₂	1.47 – 3.90	1.91	2.37	0.91

1) SMR – Steam Methane Reforming

2) CCS – Carbon Capture and Storage

Business development – Scaling up requires partners

Contact us – It is time to act NOW!

Thank you!

COMPETITION Methane pyrolysis (cracking/splitting) for turquoise hydrogen production

Third party based comparison on different turquoise (clean) hydrogens

	Plasma Pyrolysis	Fluidised Bed	Moving Carbon Bed	Molten Metal or Molten Salt	Hycamite
Process shown	Monolith Materials	Hazer	BASF	TNO or C-Zero	Hycamite TCD Technologies
Hydrogen content at reactor outlet	~ 95%	~ 92%	~ 92%	Up to 95%	~ 92%
Carbon production	Carbon black as powder or granules	80 – 95% graphite encapsulating catalyst dust particles	Carbon black as powder or granules	Carbon black as powder or granules	Graphene, nanotubes, nanofibersGraphite like carbon
Catalyst required	No	Iron oxide granules	Carbon bed	 Molten 27% Nickel - 73% Bismuth Molten Manganese Chloride 	Own development
Heating mechanism	Direct heating with plasma	Indirect heat applied around the reactor	Electrodes to heat the carbon bed and indirect heat applied around the reactor	Indirect heat applied around the reactor or electrodes to heat the melt in a separate vessel	Indirect heat + own heat management
Reactor temperature	2 000 °C	900 °C	1 000 to 1 400 °C	Depends on melt, 650 to 1 100 °C	Depends on desired carbon, 600 to 800 °C
Reactor pressure	Close to atmospheric pressure	Close to atmospheric pressure	Close to atmospheric pressure	Up to 5 bar	Close to atmospheric pressure
Major disadvantages	Energy inefficient, produces only carbon black	Produced carbon difficult to separate from porous iron catalyst	Reactor clogging not solved, produces only carbon black	Produced carbon difficult to separate from catalyst, produces only carbon black	

Partially courtesy of sbh4 consulting GmbH.

Demand for sustainable carbon

Drivers

- Environmental **regulation** pushing non-ecological production methods.
- Companies eager to **decrease** their **carbon footprint**.
- Willingness for self-sufficiency and shorter logistics chains create demand for carbon production in Europe for crucial industries such as battery industry, electronics, solar and wind power construction.

Prices and market sizes

Product	Market price [€/tn]	Market size [kt] Current → 2030	Market size [USD] Current → 2030
Graphite	500 - 1 600 ⁱ	2 892 (current) ⁱⁱⁱ	16.13 bn $ ightarrow$ 31.55 bn ⁱ
Graphene	150 000 ^{iv}	$1 \to 12^{i\nu}$	$60~M \rightarrow 620~M^{i\nu}$
Carbon nanotubes (SWCNT)	2 000 000 ^{iv} (est.)	0.005 – 0.26 ^{iv}	0.1 – 5.2 bn ^{iv}
Activated carbon	1400 - 2300	2700 – 3900 ^v	2.8 bn – 4 bn
Carbon black	1 500 - 2100 ⁱ (av.) 30 000 (special grade)	14 000 - 18 000 ⁱⁱ (est.2025)	18.5 bn \rightarrow 24 bn ⁱ

Hycamite Advantages

- Hycamite offers an alternative to imported carbon products. We deduct or even remove the dependency of the overseas providers with a local, yet sustainable and clean product.
- Hycamite focuses now on the carbon use in electronical appliances, such as batteries. The need for batteries is growing and we have the access to test our products directly with the UniOulu laboratories that are well-known and renowned R&D partner within the industry.
- Global increase of steel production due to growing urbanization and rising demand for graphite for production of lightweight aircraft materials are expected to augment the graphite market outlook.
- In addition, Hycamite develops high-value-added carbon allotropes such as carbon nanotubes and carbon nanofibers, which have huge potential in demanding applications.

NB. Prices are average prices/ranges of different qualities, thus the market size seem not to be equal to the market price and size. ⁱFrost&Sullivan, ⁱⁱExpert Market Research, ⁱⁱⁱMordor Intelligence, ^{iv}IdTechEx, ^vprnewswire

Miten - Innovaatio

• Katalyytti

- Katalyyttiperhe, kuinka katalyytti toimii yleisellä tasolla
 - Tuotetaan energiatehokkaasti vetyä ja haluttua hiiltä