Generating circular economy in Animal Manure Treatment including fiber processing

Reduction of ammonia emission by process stabilization at the source Reduction of methane emission by process conversion at the source RENURE: Recovering of Nitrogen from manure Reduction of nitrogen discharge from surplus sources Optimization of biogas plant operation by value adding processing Value adding fiber processing to growth substrate, fertilizer - and fuel pellets

> By Jens Ole Olesen joo@aquacleantech.dk

Manure processing routes overview by Aqua Cleantech, ACT, and Advanced Substrate technology, AST

Environmental and economical benefits: Ammonia captured and stabilized at source All N-nutrient as NO3 CH4 mineralized Fiber for value processing Screw press reject, kg/ton 5,3% TS 53,1 VS of TS 60,8% 32,3 4,58 N_{tot} NH₄⁺ 3,56 Screw press 0,00 NO₃ **Centrifugal fine filtration** 0,70 Ρ 6,43 K **ACT** nitrification S 0,54 Value adding fiber processing kg/ton Fiber fraction, Fiber post-Ni, kg/ton Reject post- Ni, kg/ton 32,0% 320,0 TS 30,0% TS 300,0 2,0% TS 20,0 VS of TS 90,0% VS of TS 86.0% 275,2 270,0 VS of TS 8,0 40,0% N_{tot} 4,80 11,26 4,74 N_{tot} N_{tot} NO₂-N 2,63 NH₄⁺-N 0,01 NH₄⁺-N 2,56 NH_4^+-N NO₃-N 0,00 0,00 NO₃-N 3,68 0,52 0,72 3,54 4,75 4,61 6,65 0,40 2.16 0,56

Aqua Cleantech

1. Improving digestate for plant fertilization

National legislation requires that total solids (TS) content < 3,5% in digestate for field spreading. By the ACT nitrification process, NH4 will be transformed to NO3, and the process will reduce the TS content to approx. 2,0%.

2. Processing digestate for N-reduction

National legislation requires that total solids (TS) content < 3,5% in digestate for field spreading, and Nitrate Directive limits spreading of limited areas. ACT N-reduction limited the N-content to customized levels, and TS content to approx. 2,0%.

> 53,1 32,3

4,58

3,56

0,00

0.70 6,43 0,54

Screw press reject, kg/ton 5.3%

60.8%

TS

N_{tot}

NH₄⁺

NO₂

VS of TS

Environmental and economic benefits:

- Total-N reduced to farm demand or zero (all to N2)
- CH4 consumed as substrate for DN
- Fiber for value processing

NO₃-N

0,00

3,54

4,61

2.16

0,48

Aqua Cleantech

Reject po	st N-reduc., kg	/ton
TS	2,0%	20,0
VS of TS	10,0%	2,0
N _{tot}		0,13
NH_4^+-N		0,01
NO ₃ -N		0,01
Р		0,01
К		3,21
S		0.50

Fiber processing for growth substrate or fertilizer/energy pellets

ETV validation

Verification Report for AgroBioClean

Prepared by: Prepared for proposer: Status: Version: Thorkild Q. Frandsen, Danish Technological Institute Assentoft Silo A/S Final version 05-04-2019

Value from pig manure cleaning in optimal operation

	Container	Container	Container	0,8µ membran	Reduction	Reduction
Parameter	Inlet mg/l	outlet mg/l	reduction	filter, mg/l	in filter	in total
NH ₄ -N	5.473	120	98%	7,9	93%	100%
NO ₂ -N	36	1,5	96%	0,2	87%	99%
NO ₃ -N	123	2,4	98%	2,4	0%	98%
In-organic N	5.631	124	98%	10,5	92%	100%
Total - N	7.428	891	88%	241	73%	97%
Organic N	1.796	766	57%	230	70%	87%
Total-P	1.815	508	72%	50	90%	97%
K+	4.503	1.628	64%	2.400	-47%	47%
Dry Matter	67.725	14.067	79%	5.975	58%	91%
COD	95.917	11.700	88%	1.173	90%	99%
TOC	28.315	3.750	87%	1.021	73%	96%
pH-value	7,8	8,3	-6%	8,2	1%	-5%

1

ADVANTAGES of ACT and AST technologies in European animal production

- Generation of circular economy in domestic animal production
- Reductions in greenhouse gas emission
- Reductions in ammonia emission
- Optimization of biogas plant operation
- Complete utilization of fiber products from agriculture
- Economical/environmental advantages by savings in transportation costs.
- Large scale production possible
- Animal production without farm land possible
- Reduction in smell impact
- Environmentally neutral disposal of excess waste water
- No waste products from animal production

AQUA CLEANTECH

Thank you for your attention

joo@aquacleantech.dk